login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ceiling(n^(1/n))^n - n.
0

%I #18 Sep 10 2017 05:25:04

%S 0,2,5,12,27,58,121,248,503,1014,2037,4084,8179,16370,32753,65520,

%T 131055,262126,524269,1048556,2097131,4194282,8388585,16777192,

%U 33554407,67108838,134217701,268435428,536870883,1073741794,2147483617

%N a(n) = ceiling(n^(1/n))^n - n.

%F a(1)=0; a(n) = 2^n - n for n > 1. - _Benoit Cloitre_, Nov 28 2002

%p a:=n->sum(binomial(n,k)+binomial(k,n), k=2..n): seq(a(n), n=1..31); # _Zerinvary Lajos_, Apr 29 2007

%t Table[Ceiling[n^(1/n)]^n-n, {n, 1, 30}]

%Y Same as A000325 except for the first term.

%K nonn

%O 1,2

%A _Joseph L. Pe_, Nov 25 2002