|
|
A076778
|
|
3-nadirs of Omega: numbers k such that Omega(k-3) > Omega(k-2) > Omega(k-1) > Omega(k) < Omega(k+1) < Omega(k+2) < Omega(k+3), where Omega(k) = number of prime factors of k, counting multiplicity.
|
|
1
|
|
|
40147, 126173, 168907, 230947, 255427, 322627, 383133, 393027, 393773, 415677, 450173, 466827, 495123, 502973, 579533, 661747, 692547, 745747, 757227, 777773, 803157, 816573, 824947, 846173, 863453, 902333, 919389, 942653, 946013, 959213
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
I call n a "k-nadir" (or nadir of depth k) of the arithmetical function f if n satisfies f(n-k) > ... > f(n-1) > f(n) < f(n+1) < ... < f(n+k).
|
|
LINKS
|
|
|
MATHEMATICA
|
Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; Select[Range[5, 10^6], Omega[ # - 3] > Omega[ # - 2] > Omega[ # - 1] > Omega[ # ] < Omega[ # + 1] < Omega[ # + 2] < Omega[ # + 3] &]
|
|
PROG
|
(Magma) f:=func<n|&+[p[2]: p in Factorization(n)]>; f1:=func<n| f(n-3) gt f(n-2) and f(n-2) gt f(n-1) and f(n-1) gt f(n) >; f2:=func<n| f(n+3) gt f(n+2) and f(n+2) gt f(n+1) and f(n+1) gt f(n) >; [k:k in [5..960000]| f1(k) and f2(k)]; // Marius A. Burtea, Feb 19 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|