Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Mar 14 2020 09:49:47
%S 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51238,270164,409904,
%T 1947044,4057118,17476816,99448300,390689750,1445284240,5203023264,
%U 18055712240,59809546795,189973513945,581095454420,1709208146190
%N Weight distribution of [137, 69, 21] binary quadratic-residue (or QR) code.
%C Taken from the Tjhai-Tomlinson web site.
%C According to Boston and Hao, the Tjhai-Tomlinson web site gives several erroneous values, but their article with Ambroze and Ahmed has correct values. - _Eric M. Schmidt_, Nov 17 2017
%H Nigel Boston and Jing Hao, <a href="https://arxiv.org/abs/1705.06413">The Weight Distribution of Quasi-quadratic Residue Codes</a>, arXiv:1705.06413 [cs.IT], 2017.
%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm"> Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a> [dead link]
%H C. Tjhai, M. Tomlinson, M. Ambroze, M. Ahmed, <a href="https://arxiv.org/abs/0801.3926">On the Weight Distribution of the Extended Quadratic Residue Code of Prime 137</a>, arXiv:0801.3926 [cs.IT], 2008.
%e The weight distribution is:
%e i A_i
%e 0 1
%e 21 51238
%e 22 270164
%e 23 409904
%e 24 1947044
%e 25 4057118
%e 26 17476816
%e 27 99448300
%e 28 390689750
%e 29 1445284240
%e 30 5203023264
%e 31 18055712240
%e 32 59809546795
%e 33 189973513945
%e 34 581095454420
%e 35 1709208146190
%e 36 4842756414205
%e 37 13221982102853
%e 38 34794689744350
%e 39 88328700833460
%e 40 216405317041977
%e 41 511980845799941
%e 42 1170241933257008
%e 43 2585374360137184
%e 44 5523299769383984
%e 45 11414864729214318
%e 46 22829729458428636
%e 47 44202380361406672
%e 48 82879463177637510
%e 49 150535995889831600
%e 50 264943352766103616
%e 51 451961780387038844
%e 52 747475252178564242
%e 53 1198781830242451728
%e 54 1864771735932702688
%e 55 2814110491202421488
%e 56 4120661790689260036
%e 57 5855675469990794812
%e 58 8076793751711441120
%e 59 10814690610004223000
%e 60 14059097793005489900
%e 61 17746731937729182608
%e 62 21754058504313191584
%e 63 25897686719588958304
%e 64 29944200269524733039
%e 65 33629639551783390742
%e 66 36686879511036426264
%e 67 38877142978140092004
%e 68 40020588359850094710
%e 69 40020588359850094710
%e 70 38877142978140092004
%e 71 36686879511036426264
%e 72 33629639551783390742
%e 73 29944200269524733039
%e 74 25897686719588958304
%e 75 21754058504313191584
%e 76 17746731937729182608
%e 77 14059097793005489900
%e 78 10814690610004223000
%e 79 8076793751711441120
%e 80 5855675469990794812
%e 81 4120661790689260036
%e 82 2814110491202421488
%e 83 1864771735932702688
%e 84 1198781830242451728
%e 85 747475252178564242
%e 86 451961780387038844
%e 87 264943352766103616
%e 88 150535995889831600
%e 89 82879463177637510
%e 90 44202380361406672
%e 91 22829729458428636
%e 92 11414864729214318
%e 93 5523299769383984
%e 94 2585374360137184
%e 95 1170241933257008
%e 96 511980845799941
%e 97 216405317041977
%e 98 88328700833460
%e 99 34794689744350
%e 100 13221982102853
%e 101 4842756414205
%e 102 1709208146190
%e 103 581095454420
%e 104 189973513945
%e 105 59809546795
%e 106 18055712240
%e 107 5203023264
%e 108 1445284240
%e 109 390689750
%e 110 99448300
%e 111 17476816
%e 112 4057118
%e 113 1947044
%e 114 409904
%e 115 270164
%e 116 51238
%e 137 1
%Y Cf. A097937.
%K nonn,fini
%O 0,22
%A _N. J. A. Sloane_, Apr 14 2009
%E Corrected (using the Tjhai et al. arXiv article) by _Eric M. Schmidt_, Nov 17 2017