login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest a(n)>a(n-1) such that a(n)^2+a(n-1)^2 is a perfect square, a(1)=11.
1

%I #10 May 17 2023 10:51:35

%S 11,60,63,84,112,180,189,252,275,660,693,924,1232,1326,1768,1974,2632,

%T 4026,5368,6405,8200,8319,11092,11715,15620,16401,19720,20706,20880,

%U 20910,24752,24960,25300,26565,29716,29835,33048,35055,41496,42997

%N Smallest a(n)>a(n-1) such that a(n)^2+a(n-1)^2 is a perfect square, a(1)=11.

%C The sequence is infinite.

%H Robert Israel, <a href="/A076676/b076676.txt">Table of n, a(n) for n = 1..986</a>

%p A076600:= proc(n) local q;

%p q:= max(select(t -> n^2/t - t > 2*n and (t - n^2/t)::even, numtheory:-divisors(n^2)));

%p if q = -infinity then 0 else (n^2/q - q)/2 fi;

%p end proc:

%p A[1]:= 11;

%p for n from 2 to 100 do

%p A[n]:= A076600(A[n-1]);

%p od:

%p seq(A[i],i=1..100); # _Robert Israel_, Mar 22 2018

%t nmax = 100;

%t A076600[n_] := Module[{q},

%t q = Max[Select[Divisors[n^2], n^2/# - # > 2n &&

%t EvenQ[# - n^2/#]&]];

%t If[q == -Infinity, 0, (n^2/q - q)/2]];

%t a[1] = 11;

%t For[n = 2, n <= nmax, n++, a[n] = A076600[a[n - 1]]];

%t Table[a[n], {n, 1, nmax}] (* _Jean-François Alcover_, May 17 2023, after _Robert Israel_ *)

%Y Cf. A076600.

%K nonn

%O 1,1

%A _Zak Seidov_, Oct 25 2002