login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076644
a(1)=1; for n>1, a(n) = a(n-floor(sqrt(n))) + n.
3
1, 3, 6, 7, 11, 13, 18, 21, 22, 28, 32, 34, 41, 46, 49, 50, 58, 64, 68, 70, 79, 86, 91, 94, 95, 105, 113, 119, 123, 125, 136, 145, 152, 157, 160, 161, 173, 183, 191, 197, 201, 203, 216, 227, 236, 243, 248, 251, 252, 266, 278, 288, 296, 302, 306, 308, 323, 336
OFFSET
1,2
COMMENTS
a(n) = floor(2/3*n*(sqrt(n)+1)) for n in A076660.
The sign of a(n) - floor(2/3*n*(sqrt(n)+1)) changes often.
Cumulative sums of A122196. - Franklin T. Adams-Watters, Aug 25 2006
LINKS
FORMULA
Write n=r^2+s with -r < s <= r; then a(n) = r*(r+1)*(4r-1)/6 + x, where x = -s^2 if s <= 0, x = s*(2r+1-s) if s >= 0. - Dean Hickerson, Nov 11 2002
a(n) is asymptotic to 2/3*n^(3/2).
MATHEMATICA
a[n_] := Module[{r, s}, r=Floor[1/2+Sqrt[n]]; s=n-r^2; (r(r+1)(4r-1))/6+If[s<=0, -s^2, s(2r+1-s)]]
PROG
(PARI) a(n)=if(n<2, n>0, n+a(n-sqrtint(n)))
(Haskell)
a076644 n = a076644_list !! (n-1)
a076644_list = scanl1 (+) a122196_list
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 23 2002
STATUS
approved