login
Maximum of the absolute values of the coefficients of P(n,x) where P(n,x) = 4^(n-1)*Product_{k=0..n} (x - cos(k*Pi/n)^2).
0

%I #8 Jan 07 2021 21:13:38

%S 2,8,40,208,1200,6528,34048,196608,1112064,6062080,33701888,194871296,

%T 1091371008,5950930944,34801188864,198474465280,1105056497664,

%U 6298980581376,36394596564992,205774030635008,1151529050439680

%N Maximum of the absolute values of the coefficients of P(n,x) where P(n,x) = 4^(n-1)*Product_{k=0..n} (x - cos(k*Pi/n)^2).

%e p(3,x) = 16*x^4 - 40*x^3 + 33*x^2 -10*x + 1, hence a(3)=40.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Oct 22 2002