login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = r * max(e_1, ..., e_r), where n = p_1^e_1 . .... p_r^e_r is the canonical prime factorization of n, a(1) = 0.
4

%I #16 Sep 09 2024 09:34:45

%S 0,1,1,2,1,2,1,3,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,3,4,1,3,1,5,2,2,

%T 2,4,1,2,2,6,1,3,1,4,4,2,1,8,2,4,2,4,1,6,2,6,2,2,1,6,1,2,4,6,2,3,1,4,

%U 2,3,1,6,1,2,4,4,2,3,1,8,4,2,1,6,2,2,2,6,1,6,2,4,2,2,2,10,1,4,4,4,1,3,1,6,3

%N a(n) = r * max(e_1, ..., e_r), where n = p_1^e_1 . .... p_r^e_r is the canonical prime factorization of n, a(1) = 0.

%C Introduced by Luis Flavio Soares Nunes - see link. Omega(n) <= a(n) for n > 1, where Omega(n) = the number of prime factors of n, counting multiplicity, A001222.

%H Antti Karttunen, <a href="/A076526/b076526.txt">Table of n, a(n) for n = 1..10000</a>

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_201.htm">Puzzle #201 The Arithmetic Function A(n)</a> in "The Prime Puzzles and Problems Connection".

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.

%F a(n) = A001221(n) * A051903(n). - _Antti Karttunen_, May 28 2017

%t a[n_] := Module[{pf}, pf = Transpose[FactorInteger[n]]; Length[pf[[1]]]*Max[pf[[2]]]]; Table[a[i], {i, 2, 100}]

%o (PARI) a(n) = if(n == 1, 0, my(e = factor(n)[, 2]); vecmax(e) * #e); \\ _Amiram Eldar_, Sep 08 2024

%Y Cf. A001221, A001222, A051903, A076558, A076745.

%K easy,nonn

%O 1,4

%A _Joseph L. Pe_, Nov 10 2002

%E a(1)=0 prepended and more terms added by _Antti Karttunen_, May 28 2017