login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd-digit perfect powers.
2

%I #12 Mar 14 2020 05:55:26

%S 1,9,1331,3375,35937,59319,357911,753571,759375,5177717,5359375,

%T 5735339,9393931,17373979,37595375,39135393,37159393753,99317171591,

%U 175333911173,397551775977,1913551573375,9735913353977,11997979755957,17171515157399,335571975137771

%N Odd-digit perfect powers.

%C a(19) > 1.3*10^11. - _Robert G. Wilson v_, Dec 17 2002

%H Giovanni Resta, <a href="/A076442/b076442.txt">Table of n, a(n) for n = 1..566</a> (terms < 10^57)

%t NextOddNbr[n_] := Block[{d = If[ EvenQ[n], IntegerDigits[n + 1], IntegerDigits[n + 2]], l}, l = Length[d]; While[l != 1, If[ EvenQ[ d[[l]]], d[[l]]++ ]; If[d[[l]] > 9, d[[l - 1]]++; d[[l]] = 1]; l-- ]; If[ EvenQ[ d[[1]]], d[[1]]++ ]; If[ d[[1]] > 9, d[[1]] = 11]; FromDigits[d]] k = 1; Do[ If[ !PrimeQ[k] && Apply[GCD, Last[ Transpose[ FactorInteger[k]]]] > 1, Print[k]]; k = NextOddNbr[k], {n, 1, 10^8}]

%Y Cf. A001597, A014261, A075787.

%K nonn,base

%O 1,2

%A _Robert G. Wilson v_ and _Zak Seidov_, Oct 11 2002

%E Extended by _Robert G. Wilson v_, Dec 17 2002

%E Terms a(19) and beyond from _Giovanni Resta_, Mar 13 2020