Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Dec 03 2024 12:21:50
%S 0,1,1,1,2,2,2,2,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,7,7,7,7,7,8,8,
%T 8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,
%U 10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12
%N Number of perfect powers < n.
%C Perfect powers are in A001597. The function a(n) increases much more slowly than pi(n): e.g., a(1765)=54 and pi(1765)=274. See also A076412.
%C a(n) >= A000196(n-1). - _Robert Israel_, Jul 31 2015
%C This is essentially the same as A069623 which is the main entry, see there for more formulas. - _M. F. Hasler_, Aug 16 2015
%H Harvey P. Dale, <a href="/A076411/b076411.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = n^(1/2) + n^(1/3) + n^(1/5) - n^(1/6) + n^(1/7) - n^(1/10) + O(n^(1/11)). - _Charles R Greathouse IV_, Aug 14 2015
%e a(9)=3 because there are 3 perfect powers less than 9: 1,4,8.
%t Join[{0},Accumulate[Table[If[GCD@@FactorInteger[n][[All,2]]>1,1,0],{n,90}]]+1] (* _Harvey P. Dale_, Mar 19 2020 *)
%o (PARI) a(n)=n--; n-sum(k=1,logint(n,2), moebius(k)*(sqrtnint(n,k)-1)) \\ _Charles R Greathouse IV_, Jul 21 2017
%o (Python)
%o from sympy import mobius, integer_nthroot
%o def A076411(n): return int(n-1+sum(mobius(k)*(1-integer_nthroot(n-1,k)[0]) for k in range(1,(n-1).bit_length()))) # _Chai Wah Wu_, Dec 03 2024
%Y A069623(n) = a(n+1) is the main entry.
%Y Cf. A001597, A076412, A075802, A096623.
%K nonn
%O 1,5
%A _Zak Seidov_, Oct 09 2002