Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 25 2015 23:32:42
%S 1,1,2,3,4,4,4,7,6,9,10,10,9,13,13,15,16,14,18,17,19,22,24,25,23,25,
%T 27,28,29,30,34,33,37,34,39,40,36,43,42,45,41,48,49,45,51,52,54,57,58,
%U 52,60,59,64,59,67,62,69,70,69,73,75,68,78,79,81,84,84,87,88,80,87,93,93
%N (Sum of the quadratic residues of prime(n)) / prime(n).
%C Always an integer for primes > 3.
%D Kenneth A. Ribet, Modular forms and Diophantine questions, Challenges for the 21st century (Singapore 2000), 162-182; World Sci. Publishing, River Edge NJ 2001; Math. Rev. 2002i:11030.
%F a(n) = A076409(n)/prime(n).
%F a(n) ~= p(n)/4. - _David W. Wilson_, Oct 09 2002
%F If prime(n) = 4k+1 then a(n) = k.
%t Table[ Apply[ Plus, Flatten[ Position[ Table[ JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]] /Prime[n], {n, 3, 50}]
%K nonn
%O 3,3
%A _R. K. Guy_, Oct 08 2002
%E Edited and extended by _Robert G. Wilson v_, Oct 09 2002