%I #11 Apr 28 2019 10:53:04
%S 2,3,3,5,5,5,7,7,7,11,11,11,11,11,13,13,13,17,17,17,17,17,19,19,19,23,
%T 23,23,23,23,29,29,29,29,29,29,29,31,31,31,37,37,37,37,37,37,37,41,41,
%U 41,41,41,43,43,43,47,47,47,47,47,53,53,53,53,53,53,53,59,59,59,59,59
%N Primes with subscripts from the Bonse sequence.
%C This and sequence A060646 was used to prove that 30 is the largest number whose RRS does not contain composite numbers. See A048597, A060646 and corresponding References.
%F a(n) = prime(A060646(n)).
%t c[x_, j_] := x+1-(j+Prime[j])c[x, 0]=x; a=1000; t=Table[0, {a}]; t1=Table[0, {a}]; Table[fl=1; (*Print["% ", u, " #"]; *)Do[s=c[u, n]; If[Equal[fl, 1]&&Equal[Sign[s], -1], Print[n]; t[[u]]=n; t1[[u]]=Prime[n]; fl=0], {n, 1, u}], {u, 1, a}] //t (*=A060646*)//t1 (* =A076367 *)
%Y Cf. A048597, A060646, A076368. See also A076366.
%K nonn
%O 1,1
%A _Labos Elemer_, Oct 14 2002