login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Squarefree numbers k such that A076341(k) = 0.
1

%I #10 Feb 24 2024 11:04:45

%S 1,2,15,30,143,286,2145,3599,4290,5183,7198,10366,11663,23326,32399,

%T 36863,51983,53985,57599,64798,73726,77745,97343,103966,107970,115198,

%U 121103,155490,174945,176399,186623,194686,242206,349890,352798,359999,373246,435599,485985

%N Squarefree numbers k such that A076341(k) = 0.

%e Applying the map as defined in A076340, A076341:

%e A005117(19) = 30 = 5*3*2 = (4+1)*(4-1)*2 -> (4,1)*(4,-1)*(2,0) = (4*4+1,4-4)*(2,0) = (34,0), therefore A076340(30) = 34 and A076341(30) = 0, hence 30 is a term.

%e A005117(28) = 42 = 7*3*2 = (8-1)*(4-1)*2 -> (8,-1)*(4,-1)*(2,0) = (8*4-1,-8-4)*(2,0) = (62,-24), therefore A076340(42) = 62 and A076341(42) = -24, hence 42 is not a term.

%t f[p_, e_] := 4*(Floor[p/4] + Floor[Mod[p, 4]/2]) + (2 - Mod[p, 4])*I; f[2, e_] := 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[500000], SquareFreeQ[#] && Im[s[#]] == 0 &] (* _Amiram Eldar_, Feb 24 2024 *)

%Y Cf. A005117, A076340, A076341, A076348.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Oct 08 2002

%E More terms from _Amiram Eldar_, Feb 24 2024