Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 26 2017 19:33:38
%S 0,0,0,2,0,0,0,3,3,0,0,2,0,0,0,2,0,2,0,2,0,0,0,3,3,0,3,3,0,0,0,2,0,0,
%T 0,2,0,0,0,2,0,0,0,3,3,0,0,4,4,4,0,2,0,2,0,2,0,0,0,2,0,0,3,3,0,0,0,2,
%U 0,0,0,2,0,0,3,3,0,0,0,3,3,0,0,2,0,0,0,2,0,2,0,2,0,0,0,2,0,4,4,4,0,0,0,2,0
%N a(n) = 0 if n is a squarefree number, otherwise the distance between the two nearest squarefree numbers around n: A067535(n)-A070321(n).
%C a(n)=0 iff n is squarefree; otherwise a(n) > 1.
%H Antti Karttunen, <a href="/A076260/b076260.txt">Table of n, a(n) for n = 1..16384</a>
%e The nearest squarefree numbers surrounding 25 = 5^2 are A070321(25) = 23 and A067535(25) = 26, therefore a(25) = 26-23 = 3. - Edited by _Antti Karttunen_, Nov 23 2017
%t Block[{nn = 105, s}, s = Select[Range[nn + 15], SquareFreeQ]; Array[If[FreeQ[s, #], First@ Differences@ s[[# - 1 ;; #]] &@ FirstPosition[Union@ Append[s, #], #][[1]], 0] &, 105]] (* _Michael De Vlieger_, Nov 23 2017 *)
%o (PARI)
%o A067535(n) = { while(!issquarefree(n), n++); n; } \\ These two functions from _Michel Marcus_, Mar 18 2017
%o A070321(n) = { while(!issquarefree(n), n--); n; }
%o A076260(n) = (A067535(n)-A070321(n)); \\ _Antti Karttunen_, Nov 22 2017
%Y Cf. A005117, A020753, A020754, A076259, A080733.
%K nonn
%O 1,4
%A _Reinhard Zumkeller_, Oct 03 2002
%E Definition corrected to match with the data as the old definition was that of A080733 - _Antti Karttunen_, Nov 23 2017