|
|
A076240
|
|
Remainder when 2nd order prime pp(n) = A006450(n) is divided by n-th prime = A000040(n).
|
|
6
|
|
|
1, 2, 1, 3, 9, 2, 8, 10, 14, 22, 3, 9, 15, 19, 23, 29, 41, 39, 63, 69, 2, 6, 16, 16, 24, 42, 48, 52, 54, 52, 74, 84, 88, 102, 114, 122, 134, 152, 156, 166, 168, 1, 7, 13, 19, 23, 31, 71, 71, 73, 73, 65, 77, 91, 79, 91, 109, 115, 125, 137, 149, 155, 185, 197, 203, 197, 235
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(4) = 3 since prime(prime(4)) (mod prime(4)) = prime(7) (mod 7) = 17 (mod 7) = 3. - Michael De Vlieger, Mar 25 2017
|
|
MAPLE
|
a:= n-> (p-> irem(ithprime(p), p))(ithprime(n)):
|
|
MATHEMATICA
|
Table[Mod @@ Map[Nest[Prime, n, #] &, {2, 1}], {n, 65}] (* Michael De Vlieger, Mar 25 2017 *)
|
|
PROG
|
(PARI) a(n) = prime(prime(n)) % prime(n); \\ Michel Marcus, Mar 25 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|