login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers n such that the sum of the digits of 2^n is prime.
8

%I #23 Feb 21 2024 10:53:23

%S 1,4,5,7,8,10,12,18,19,20,23,24,25,28,29,30,31,34,35,38,39,40,48,52,

%T 63,66,68,69,72,81,87,89,92,94,96,97,99,101,119,121,125,132,133,145,

%U 146,148,153,158,162,164,165,167,175,177,184,187,191

%N Numbers n such that the sum of the digits of 2^n is prime.

%H Zak Seidov, <a href="/A076203/b076203.txt">Table of n, a(n) for n = 1..1000.</a>

%e For n=7, 2^7=128 and 1+2+8=11, a prime. For n=23, 2^23=8388608 having the sum of its digits equaling 41.

%t a={};For[n=1,n<200, n++, If[PrimeQ[Plus @@ IntegerDigits[2^n]],AppendTo[a, n]]];a (* _Stefan Steinerberger_, Jun 08 2007 *)

%t Select[Range[200],PrimeQ[Total[IntegerDigits[2^#]]]&] (* _Harvey P. Dale_, Jan 30 2018 *)

%o (R)

%o library(gmp); digsum<-function(x) sum(as.numeric(unlist(strsplit(as.character(x),split=""))))

%o which(isprime(sapply(as.character(as.bigz(2)^(1:100)),digsum))>0) #_Christian N. K. Anderson_, Apr 29 2013

%K nonn,base

%O 1,2

%A _Zak Seidov_, Nov 02 2002

%E More terms from _Stefan Steinerberger_, Jun 08 2007