login
a(n), for n > 1, equals the least prime p such that p - a(n-1) is a cube, a(1)=2.
4

%I #12 Apr 08 2013 19:57:49

%S 2,3,11,19,83,1811,2027,2243,2251,2467,2531,2539,3539,3547,4547,5059,

%T 10891,12619,13619,13627,13691,13907,14419,155027,155539,156539,

%U 157051,267643,268643,270371,270379,270443,270451,270667,276499,277499,280243,281243,281251

%N a(n), for n > 1, equals the least prime p such that p - a(n-1) is a cube, a(1)=2.

%H Zak Seidov, <a href="/A076201/b076201.txt">Table of n, a(n) for n = 1..1000</a>

%e a(2) = 3 because 3 - a(1) = 1^3.

%e a(3) = 11 because 11 - a(2) = 2^3, while neither 5 - 3 nor 7 - 3 is a cube.

%t p = 3; s = Join[{2, 3}, Table[x = 2; While[!PrimeQ[q = p + x^3], x = x + 2]; p = q, {29}]] (* _Zak Seidov_, Apr 08 2013 *)

%Y Cf. A073609.

%K nonn

%O 1,1

%A _Zak Seidov_, Nov 02 2002