login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of nonempty sets of distinct positive integers that have a least common multiple of n.
49

%I #49 Mar 15 2024 06:19:41

%S 1,2,2,4,2,10,2,8,4,10,2,44,2,10,10,16,2,44,2,44,10,10,2,184,4,10,8,

%T 44,2,218,2,32,10,10,10,400,2,10,10,184,2,218,2,44,44,10,2,752,4,44,

%U 10,44,2,184,10,184,10,10,2,3748,2,10,44,64,10,218,2,44,10,218,2,3392,2,10

%N a(n) is the number of nonempty sets of distinct positive integers that have a least common multiple of n.

%C a(n)=1 iff n=1, a(p^k)=2^k, a(p*q)=10; where p & q are unique primes. a(n) cannot equal an odd number >1. - _Robert G. Wilson v_

%C If m has more divisors than n, then a(m) > a(n). - _Matthew Vandermast_, Aug 22 2004

%C If n is of the form p^r*q^s where p & q are distinct primes and r & s are nonnegative integers then a(n)=2^(rs)*(2^(r+s+1) -2^r-2^s+1); for example f(1400846643)=f(3^5*7^8)=2^(5*8)*(2^ (5+8+1)-2^5-2^8+1)=17698838672310272. Also if n=p_1^r_1*p_2^r_2*...*p_k^r_k where p_1,p_2,...,p_k are distinct primes and r_1,r_2,...,r_k are natural numbers then 2^(r_1*r_2*...*r_k)||a(n). - _Farideh Firoozbakht_, Aug 06 2005

%C None of terms is divisible by Mersenne numbers 3 or 7. For any n, a(n) is congruent to A008836(n) mod 3. Since A008836(n) is always 1 or -1, this implies that A000225(2)=3 never divides a(n). - _Matthew Vandermast_, Oct 12 2010

%C There are terms divisible by larger Mersenne numbers. For example, a(2*3*5*7*11*13*19*23^3) is divisible by 31. - _Max Alekseyev_, Nov 18 2010

%H David Wasserman, <a href="/A076078/b076078.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a>

%F 2^d(n) - 1 = Sum_{m|n} a(m), where d(n) = A000005(n) is the number of divisors of n, so a(n) = Sum_{m|n} mu(n/m)*(2^d(m) - 1).

%F a(n) = 2*A069626(n), for n > 1. - _Ridouane Oudra_, Mar 12 2024

%e a(6) = 10. The sets with LCM 6 are {6}, {1,6}, {2,3}, {2,6}, {3,6}, {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}, {1,2,3,6}.

%p with(numtheory): seq(add(mobius(n/d)*(2^tau(d)-1), d in divisors(n)), n=1..80); # _Ridouane Oudra_, Mar 12 2024

%t f[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu[n/d](2^DivisorSigma[0, d] - 1))]; Table[ f[n], {n, 75}] (* _Robert G. Wilson v_ *)

%o (PARI) a(n) = local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; \\ Definition corrected by _David Wasserman_, Dec 26 2007

%Y Cf. A076413, A097210-A097218, A097416, A002235.

%Y Cf. A069626.

%K easy,nonn,nice

%O 1,2

%A _Amarnath Murthy_, Oct 05 2002

%E Edited by _Dean Hickerson_, Oct 08 2002

%E Definition corrected by _David Wasserman_, Dec 26 2007

%E Edited by _Charles R Greathouse IV_, Aug 02 2010

%E Edited by _Max Alekseyev_, Nov 18 2010