Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 17 2020 10:41:23
%S 1,32,654,97180,4321111115,987622111110,87654322222222,
%T 9654333333332120,987544444443333210,98765555555444443210,
%U 9876666666665555524130,988777777777776666543120,99998888888888877654321100
%N Largest multiple of n that can be formed by using the digits of the next n numbers, or 0 if no such number exists.
%C Conjecture: No entry is zero. (At least one multiple of n can be formed by using the digits of the next n numbers.)
%C "Next n numbers" means {1+n(n-1)/2,...,n(n+1)/2}. - _M. F. Hasler_, Jul 22 2011
%o (PARI) precperm(p)={ my(t); forstep(i=#p-1,1,-1, p[i]>p[i+1] && for( j=1, #t=vecsort(vecextract(p,2^#p-2^(i-1)),,4), t[j]<p[i] && return(concat([vecextract(p,2^(i-1)-1), [t[j]], vecextract(t,Str("^"j))])))); vecsort(p,,4)} /* generic function, could be simplified/optimized for here */
%o A076072(n)={ my(d=vecsort(Vec(concat(vector(n,i,Str(i+n*(n-1)/2)))),,4)); for( i=1, (#d)!, eval(concat(d))%n || break; d=precperm(d)); eval(concat(d))} \\ _M. F. Hasler_, Jul 24 2011
%Y Cf. A076070, A076071, A076073, A080480, A192392.
%K base,nonn
%O 1,2
%A _Amarnath Murthy_, Oct 05 2002
%E More terms from _David Wasserman_, Mar 23 2005