OFFSET
1,2
COMMENTS
T(a(n)) + T(a(n)+2) = A069017(n+1) where T(k) = k*(k+1)/2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
FORMULA
Let b(n) = A001109(n). Then we have a pair of recursion formulas:
a(2n+2) = 2*a(2n+1) - a(2n) + 2*b(n+1);
a(2n+3) = 2*a(2n+2) - a(2n+1) + 2*b(n+2).
G.f.: x*(3 + 5*x - x^2 - x^3)/((1-x)*(1 - 6*x^2 + x^4)).
a(n) = -3 + (1/8)*(-1^n)((7 + 5*sqrt(2))*(-1 - sqrt(2))^n + (7 - 5*sqrt(2))*(-1 + sqrt(2))^n - (1 + sqrt(2))^n - (1 - sqrt(2))^n).
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Oct 29 2002
EXTENSIONS
Edited by Jon E. Schoenfield, Sep 02 2019
STATUS
approved