login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! for n < 4; else a(n) = floor(P(n-1)/n) where P(n) = a(1) * a(2) * ... * a(n).
3

%I #12 Oct 22 2014 16:25:14

%S 1,2,6,3,7,42,1512,2000376,3556892570112,11386336279786153952123289,

%T 117862412614885811248635740101130996768076206774085

%N a(n) = n! for n < 4; else a(n) = floor(P(n-1)/n) where P(n) = a(1) * a(2) * ... * a(n).

%C Original definition: a(1)=1, a(n)=n*P(n-1) if P(n-1) < n, a(n) = floor(P(n-1)/n) if n <= P(n-1), where P(n-1) = a(1) * a(2) * ... * a(n-1).

%C Next term a(12) = 1273391928...9197035520 ~ 1.27*10^100 has 101 digits. - _M. F. Hasler_, Oct 21 2014

%e a(4) = floor(1*2*6/4) = 3.

%e a(5) = floor(1*2*6*3/5) = floor(36/5) = 7.

%t a[1] = 1; p[n_] := Product[a[k], {k, 1, n}]; a[n_ /; p[n-1] < n] := a[n] = n*p[n-1]; a[n_ /; n < p[n-1]] := a[n] = Floor[p[n-1]/n]; Table[a[n], {n, 1, 12}] (* _Jean-François Alcover_, Jul 22 2013 *)

%o (PARI) a(n)=if(n<4,n!,P=3!;for(i=3,n-1,P*=P\i);P\n) \\ _M. F. Hasler_, Oct 21 2014

%Y Cf. A076039, A003462, A076042, A046901.

%K nice,nonn,easy

%O 1,2

%A _Amarnath Murthy_, Oct 29 2002

%E Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

%E Edited by _M. F. Hasler_, Oct 21 2014