login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075808
Palindromic odd composite numbers that are the products of an odd number of distinct primes.
2
555, 595, 777, 969, 1001, 1221, 1551, 1771, 3333, 3553, 5335, 5555, 5665, 5885, 5995, 7337, 7557, 7667, 7777, 7887, 9339, 9669, 9779, 9889, 11211, 11811, 12121, 12621, 12921, 13731, 14241, 14541, 15051, 15951, 16261, 16761, 17171, 18381
OFFSET
1,1
LINKS
EXAMPLE
555 = 3*5*37, 595 = 5*7*17 and 777 = 3*7*37 are palindromic, odd, composite and products of an odd number of distinct primes.
50505 = 3 * 5 * 7 * 13 * 37 is the first term with five factors.
125 = 5^3 and 5445 = 3^2 * 5 * 11^2 are not terms since they are not the products of distinct primes.
MAPLE
test := proc(n) local d; d := convert(n, base, 10); return ListTools[Reverse](d)=d and numtheory[mobius](n)=-1 and not isprime(n); end; a := []; for n from 1 to 30000 by 2 do if test(n) then a := [op(a), n]; end; od; a;
MATHEMATICA
Select[Range[2, 20000], ! PrimeQ[#] && OddQ[#] && PalindromeQ[#] &&
OddQ[Length[Transpose[FactorInteger[#]][[2]]]] &&
Max[Transpose[FactorInteger[#]][[2]]] == 1 &] (* Tanya Khovanova, Aug 26 2022 *)
PROG
(Python)
from sympy import isprime, factorint
from itertools import count, islice, product
def cond(n):
if n%2 == 0 or isprime(n): return False
f = factorint(n)
return len(f) == sum(f.values()) and len(f)&1
def oddpals(): # generator of odd palindromes
yield from [1, 3, 5, 7, 9]
for d in count(2):
for first in "13579":
for p in product("0123456789", repeat=(d-2)//2):
left = "".join(p); right = left[::-1]
for mid in [[""], "0123456789"][d%2]:
yield int(first + left + mid + right + first)
def agen(): yield from filter(cond, oddpals())
print(list(islice(agen(), 38))) # Michael S. Branicky, Aug 25 2022
CROSSREFS
Sequence in context: A205888 A186529 A274901 * A204365 A283158 A043511
KEYWORD
nonn,base
AUTHOR
Jani Melik, Oct 13 2002
EXTENSIONS
Edited by Dean Hickerson, Oct 21 2002
Name edited by Tanya Khovanova, Aug 26 2022
STATUS
approved