|
|
A075764
|
|
Schroeder pseudoprimes: Composites k that divide the k-th Schroeder number A001003(k-1).
|
|
1
|
|
|
105, 261, 301, 693, 1605, 1755, 2151, 2905, 2907, 3393, 3875, 4641, 4833, 5005, 5655, 6279, 6913, 7161, 8883, 9405, 10899, 11025, 11289, 15687, 17199, 19203, 22275, 27387, 36855, 37791, 50007, 50463, 53493, 54891, 55209, 55755, 63327, 64337
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..422
|
|
EXAMPLE
|
105 is a term because A001003(105) = 15646506064359350392347086201481965698808674470977505246623827696393838448345 which is divisible by 105.
105 is a term because A001003(104) = 15646506064359350392347086201481965698808674470977505246623827696393838448345 which is divisible by 105.
|
|
PROG
|
(PARI) x1 = 1; x2 = 1; for (n = 3, 100000, x = (3*(2*n - 3)*x1 - (n - 3)*x2)/n; if (!isprime(n), if (!(x%n), print(n))); x2 = x1; x1 = x); (Wasserman)
|
|
CROSSREFS
|
Cf. A001003, A013998, A075762.
Sequence in context: A250757 A350199 A146257 * A046299 A010090 A306122
Adjacent sequences: A075761 A075762 A075763 * A075765 A075766 A075767
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Oct 09 2002
|
|
EXTENSIONS
|
More terms from David Wasserman, Feb 23 2005
|
|
STATUS
|
approved
|
|
|
|