Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 13 2019 06:12:48
%S 2,5,13,89,233,1597,28657,514229,433494437,2971215073,
%T 99194853094755497,1066340417491710595814572169,
%U 19134702400093278081449423917,475420437734698220747368027166749382927701417016557193662268716376935476241
%N Prime Fibonacci numbers with prime indices.
%C Same as A005478 except that F(4) = 3 has been omitted.
%C Sequence of primes in A001519. [_James R. Buddenhagen_, May 20 2010]
%H T. D. Noe, <a href="/A075737/b075737.txt">Table of n, a(n) for n = 1..20</a>
%e 5 is a prime and fibonacci(5)=5 is also a prime, 7 is a prime and fibonacci(7)=13 is also a prime, but 2 is a prime and fibonacci(2)=1 is not a prime.
%p with(combinat, fibonacci): fib_supM_pra := proc(n); if (isprime(n)='true') then if (isprime(fibonacci(n))='true') then RETURN(fibonacci(n)); fi; fi; end: seq(fib_supM_pra(i), i=1..500);
%t Fibonacci[ Prime[ Select[ Range[50], PrimeQ[ Fibonacci[ Prime[ # ]]] & ]]]
%t Module[{nn=500,fibs},fibs=Fibonacci[Range[nn]];Select[Pick[fibs,Table[ If[ PrimeQ[n],1,0],{n,nn}],1],PrimeQ]] (* _Harvey P. Dale_, Sep 13 2018 *)
%o (PARI) forprime(p=2,1e3,if(isprime(t=fibonacci(p)), print1(t", "))) \\ _Charles R Greathouse IV_, Feb 03 2014
%Y Subsequence of A030426.
%Y Cf. A000045, A005478, A083668, A001519.
%K nonn
%O 1,1
%A _Jani Melik_, Oct 07 2002