Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jan 31 2020 12:26:52
%S 5,11,107,179,347,479,1187,1307,1367,1487,1619,2027,2207,2447,2999,
%T 3119,3467,4007,4079,4139,4799,5087,5807,5927,5939,6827,7079,7247,
%U 8699,9587,9839,10607,12107,12539,12659,14207,15299,16139,16187,17027
%N Safe primes (A005385) (p and (p-1)/2 are primes) such that 8*p+1 (A023228) is also prime.
%H Harvey P. Dale, <a href="/A075706/b075706.txt">Table of n, a(n) for n = 1..1000</a>
%e 11 is a prime, so is (11-1)/2=5 and also 8*11+1=89; 107 is a prime, (107-1)/2=53 and 8*107+1=857, ...
%p ts_sg8_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sg8_var_pras(i), i=1..3000);
%t Select[Prime[Range[2000]],AllTrue[{(#-1)/2,8#+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jan 31 2020 *)
%o (PARI) forprime(p=3,20000,if(isprime((p-1)/2),if(isprime(8*p+1),print1(p","))))
%Y Cf. A005384, A005385, A059455, A023228.
%K nonn
%O 1,1
%A _Jani Melik_, Oct 02 2002
%E More terms from _Ralf Stephan_, Mar 19 2003