login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075682
First differences of A075681.
2
0, 2, 19, 39, 61, 86, 114, 145, 179, 216, 256, 299, 345, 394, 446, 501, 559, 620, 684, 751, 821, 894, 970, 1049, 1131, 1216, 1304, 1395, 1489, 1586, 1686, 1789, 1895, 2004, 2116, 2231, 2349, 2470, 2594, 2721, 2851, 2984, 3120, 3259, 3401, 3546
OFFSET
1,2
FORMULA
a(n) = (1/2)*(3*n^2 + 17*n - 38), for n > 3. - Ralf Stephan
From G. C. Greubel, Jan 01 2024: (Start)
G.f.: x^2*(2 + 13*x - 12*x^2 + x^3 - x^4)/(1-x)^3.
E.g.f.: (1/2)*(-38 + 20*x + 3*x^2)*exp(x) + 19 + 9*x - x^2 - x^3/3!. (End)
MATHEMATICA
Join[{0, 2, 19}, LinearRecurrence[{3, -3, 1}, {39, 61, 86}, 50]] (* Harvey P. Dale, Aug 26 2014 *)
PROG
(Magma) [0, 2, 19] cat [n*(3*n+17)/2 -19: n in [4..50]]; // G. C. Greubel, Jan 01 2023
(SageMath) [0, 2, 19]+[n*(3*n+17)/2 -19 for n in range(4, 51)] # G. C. Greubel, Jan 01 2024
CROSSREFS
Sequence in context: A240552 A107143 A018610 * A062587 A109946 A141067
KEYWORD
nonn
AUTHOR
Jon Perry, Oct 12 2002
EXTENSIONS
More terms from Ralf Stephan
STATUS
approved