|
|
A075561
|
|
Domination number for kings' graph K(n).
|
|
9
|
|
|
1, 1, 1, 4, 4, 4, 9, 9, 9, 16, 16, 16, 25, 25, 25, 36, 36, 36, 49, 49, 49, 64, 64, 64, 81, 81, 81, 100, 100, 100, 121, 121, 121, 144, 144, 144, 169, 169, 169, 196, 196, 196, 225, 225, 225, 256, 256, 256, 289, 289, 289, 324, 324, 324, 361, 361, 361, 400, 400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Also the lower independence number of the n X n knight graph. - Eric W. Weisstein, Aug 01 2023
|
|
REFERENCES
|
John J. Watkins, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004, p. 102.
|
|
LINKS
|
Irene Choi, Shreyas Ekanathan, Aidan Gao, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Vaibhav Rastogi, Daniel Sheffield, Michael Yang, Angela Zhao, and Corey Zhao, The Struggles of Chessland, arXiv:2212.01468 [math.HO], 2022.
|
|
FORMULA
|
G.f.: -x*(x+1)*(x^2-x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Oct 06 2014
E.g.f.: exp(-x/2)*(exp(3*x/2)*(5 + 3*x*(3 + x)) + (6*x - 5)*cos(sqrt(3)*x/2) + sqrt(3)*(3 + 2*x)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Oct 17 2022
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 4, 4, 4, 9}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
CoefficientList[Series[(-1 - x^3)/((-1 + x)^3 (1 + x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 20 2017 *)
|
|
PROG
|
(PARI) Vec(-x*(x+1)*(x^2-x+1)/((x-1)^3*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 06 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|