Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:07
%S 0,1,1,7,4,21,13,71,44,241,149,815,504,2757,1705,9327,5768,31553,
%T 19513,106743,66012,361109,223317,1221623,755476,4132721,2555757,
%U 13980895,8646064,47297029,29249425,160004703,98950096,541292033,334745777
%N a(n) = ((1+(-1)^n)*T(n+1) + (1-(-1)^n)*S(n))/2, where T(n) = tribonacci numbers A000073, S(n) = generalized tribonacci numbers A001644.
%H G. C. Greubel, <a href="/A075536/b075536.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0, 3, 0, 1, 0, 1).
%F a(2n) = A073717(n) = A000073(2n+1).
%F a(2n+1) = A001644(2n+1).
%F a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=0, a(1)=1, a(2)=1, a(3)=7, a(4)=4, a(5)=21.
%F O.g.f.: x*(1 + x + 4*x^2 + x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).
%p A075536 := proc(n)
%p if type(n,'even') then
%p A000073(n+1) ;
%p else
%p A001644(n) ;
%p end if;
%p end proc:
%p seq(A075536(n),n=0..80) ; # _R. J. Mathar_, Aug 05 2021
%t CoefficientList[Series[(x+x^2+4x^3+x^4-x^5)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
%t LinearRecurrence[{0,3,0,1,0,1},{0,1,1,7,4,21},40] (* _Harvey P. Dale_, Jul 10 2012 *)
%o (PARI) my(x='x+O('x^40)); concat([0], Vec(x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6))) \\ _G. C. Greubel_, Apr 21 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6) )); // _G. C. Greubel_, Apr 21 2019
%o (Sage) (x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 21 2019
%Y Cf. A000073, A001644, A005013, A005247.
%K easy,nonn
%O 0,4
%A Mario Catalani (mario.catalani(AT)unito.it), Sep 23 2002
%E Index in definition corrected. - _R. J. Mathar_, Aug 05 2021