login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numerators of coefficients, where the n-th row forms the polynomial in z, P(n,z), that is the coefficient of x^n in {-log(1-x)/x}^z, for n > 0. The denominator for all the terms in the n-th row is A053657(n).
7

%I #21 Aug 14 2017 02:41:46

%S 1,5,3,6,5,1,502,485,150,15,760,802,305,50,3,152696,171150,73801,

%T 15435,1575,63,252336,295748,139020,33817,4515,315,9,51360816,

%U 62333204,31231500,8437975,1334760,124110,6300,135,88864128,110941776,58415444

%N Triangle of numerators of coefficients, where the n-th row forms the polynomial in z, P(n,z), that is the coefficient of x^n in {-log(1-x)/x}^z, for n > 0. The denominator for all the terms in the n-th row is A053657(n).

%C Each n-th row polynomial, P(n,z), has a trivial zero at z = 0; for odd rows, P(2n+1,z) also has zeros at z = -2n, z = -(2n+1), for n > 0.

%F The n-th row polynomials, P(n, z), satisfy 1 + Sum_{n>=1} P(n, z) x^n = (Sum_{k>=1} x^(k-1)/k)^z.

%e P(1,z) = z/2,

%e P(2,z) = (5z + 3z^2)/24,

%e P(3,z) = (6z + 5z^2 + z^3)/48,

%e P(4,z) = (502z + 485z^2 + 150z^3 + 15z^4)/5760,

%e P(5,z) = (760z + 802z^2 + 305z^3 + 50z^4 +3z^5)/11520,

%e P(6,z) = (152696z + 171150z^2 + 73801z^3 + 15435z^4 + 1575z^5

%e + 63z^6)/2903040,

%e P(7,z) = (252336z + 295748z^2 + 139020z^3 + 33817z^4 + 4515z^5

%e + 315z^6 + 9z^7)/5806080,

%e P(8,z) = (51360816z + 62333204z^2 + 31231500z^3 + 8437975z^4

%e + 1334760z^5 + 124110z^6 + 6300z^7 + 135z^8)/1393459200.

%p nmax:=8; A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [$2..n]); r:=1; for p in P do s := 0; q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: f(z) := convert(series((-ln(1-x)/x)^z, x, nmax+2), polynom): for n from 1 to nmax do f(n) := A053657(n+1)*coeff(f(z), x, n) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := coeff(f(n), z, m) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax); # _Johannes W. Meijer_, Jun 08 2009, revised Nov 25 2012

%t rows = 9; A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; (Rest[CoefficientList[#, z]]& /@ Rest @ CoefficientList[(-Log[1-x]/x)^z + O[x]^(rows+1), x]) * Array[A053657, rows, 2] // Flatten (* _Jean-François Alcover_, Nov 22 2016 *)

%o (PARI) {T(n,k)=local(X=x+x^2*O(x^n)); D=1;for(j=0,n,D=lcm(D,denominator( polcoeff(polcoeff((-log(1-X)/x)^z+z*O(z^j),j,z),n,x)))); return(D*polcoeff(polcoeff((-log(1-X)/x)^z+z*O(z^k),k,z),n,x))}

%Y Cf. A053657.

%Y Cf. A163972 (MC polynomials).

%K frac,nonn,tabl

%O 1,2

%A _Paul D. Hanna_, Sep 15 2002; revised Jun 27 2005