Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 17:22:26
%S 15,231,45,165,2145,105,153,8911,693,207,25425,1683,957,58311,1001,
%T 10465,115921,6435,19065,208335,10965,2961,347361,2907,5035,546535,
%U 26733,18585,821121,39123,112125,1188111,7475,157975,1666225,76275
%N z-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and y components are in A075260 and A075261.
%C See A075259 for more details.
%t m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; zLst
%Y Cf. A075259, A075260, A075261.
%K nice,nonn
%O 2,1
%A _T. D. Noe_, Sep 10 2002