login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075251
z-value of the solution (x,y,z) to 5/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and having the largest z-value. The x and y components are in A075249 and A075250.
3
6, 20, 6, 12, 70, 72, 342, 42, 99, 156, 780, 1806, 156, 272, 1564, 1332, 5852, 420, 945, 4070, 6670, 14520, 930, 1560, 2970, 7140, 30450, 1806, 1736, 16800, 26796, 56882, 3192, 5256, 29304, 23256, 97656, 5256, 11439, 16002, 75078, 157212, 8190, 13340
OFFSET
3,1
COMMENTS
See A075248 for more details.
MATHEMATICA
For[xLst={}; yLst={}; zLst={}; n=3, n<=100, n++, cnt=0; xr=n/5; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(5/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(5/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]; y++ ]; x++ ]]; zLst
CROSSREFS
KEYWORD
hard,nice,nonn
AUTHOR
T. D. Noe, Sep 10 2002
STATUS
approved