login
Number of polyominoes with n cells that tile the plane isohedrally.
10

%I #14 Feb 16 2025 08:32:47

%S 1,1,2,5,12,35,104,342,1041,3026,6512,23227,38238,108204,278426,

%T 544635,825654,3049903,3375582,12108377,21899125,36960289,53317222,

%U 220706640,271264826

%N Number of polyominoes with n cells that tile the plane isohedrally.

%C A tiling is isohedral if the symmetries of the tiling act transitively on the tiles; a shape is anisohedral if it tiles the plane, but not isohedrally.

%D Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Section 9.4.

%H Joseph Myers, <a href="http://www.polyomino.org.uk/mathematics/polyform-tiling/">Polyomino tiling</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IsohedralTiling.html">Isohedral Tiling</a>

%Y Cf. A054359, A075198, A075199, A075200, A075201, A075202, A075203, A075204, A075206, A075214, A075223.

%K hard,nonn,changed

%O 1,3

%A _Joseph Myers_, Sep 08 2002

%E More terms from _Joseph Myers_, Nov 04 2003

%E a(24) and a(25) from _Joseph Myers_, Nov 17 2010