%I #14 Feb 16 2025 08:32:47
%S 1,1,2,5,12,35,104,342,1041,3026,6512,23227,38238,108204,278426,
%T 544635,825654,3049903,3375582,12108377,21899125,36960289,53317222,
%U 220706640,271264826
%N Number of polyominoes with n cells that tile the plane isohedrally.
%C A tiling is isohedral if the symmetries of the tiling act transitively on the tiles; a shape is anisohedral if it tiles the plane, but not isohedrally.
%D Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Section 9.4.
%H Joseph Myers, <a href="http://www.polyomino.org.uk/mathematics/polyform-tiling/">Polyomino tiling</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IsohedralTiling.html">Isohedral Tiling</a>
%Y Cf. A054359, A075198, A075199, A075200, A075201, A075202, A075203, A075204, A075206, A075214, A075223.
%K hard,nonn,changed
%O 1,3
%A _Joseph Myers_, Sep 08 2002
%E More terms from _Joseph Myers_, Nov 04 2003
%E a(24) and a(25) from _Joseph Myers_, Nov 17 2010