login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of composite numbers c with n <= c <= 2*n.
19

%I #29 Oct 22 2024 02:57:40

%S 0,1,2,3,4,5,5,7,7,7,8,9,10,12,12,12,13,15,15,17,17,17,18,19,20,21,21,

%T 22,23,24,24,26,27,27,28,28,28,30,31,31,32,33,34,36,36,37,38,40,40,41,

%U 41,41,42,43,43,44,44,45,46,48,49,51,52,52,53,53,54,56,56,56,57,59,60

%N Number of composite numbers c with n <= c <= 2*n.

%C The number of composite numbers <= n is n less the number of primes less 1.

%C The sequence is nondecreasing.

%H N. J. A. Sloane, <a href="/A075084/b075084.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = n - pi(2n) + pi(n-1) + 1, for n>1.

%e a(8) = 7: the composite numbers are 8,9,10,12,14,15 and 16.

%p chi := proc(n) if n <= 3 then 0 else n - numtheory:-pi(n) - 1; fi; end; # A065855

%p A075084 := proc(n) chi(2*n) - chi(n-1); end;

%p a := [seq(A075084(n),n=1..120)]; # _N. J. A. Sloane_, Oct 20 2024

%t Table[n - PrimePi[2n] + PrimePi[n - 1] + 1, {n, 2, 75}]

%o (Python)

%o from sympy import primepi

%o def A075084(n): return n+primepi(n-1)-primepi(n<<1)+1 if n>1 else 0 # _Chai Wah Wu_, Oct 20 2024

%o (PARI) a(n) = if (n>1, n - primepi(2*n) + primepi(n-1) + 1, 0); \\ _Michel Marcus_, Oct 21 2024

%Y Related sequences:

%Y Primes (p) and composites (c): A000040, A002808, A000720, A065855.

%Y Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.

%Y Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

%K easy,nonn

%O 1,3

%A _Amarnath Murthy_, Sep 11 2002

%E Edited by _Robert G. Wilson v_, Sep 12 2002

%E Definition clarified by _N. J. A. Sloane_, Oct 20 2024