login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(2) = 2 and then the smallest number not occurring earlier such that every term divides the product of its neighbors: a(n-1)*a(n+1)/a(n) is an integer.
5

%I #72 Apr 25 2016 12:05:00

%S 1,2,4,6,3,5,10,8,12,9,15,20,16,24,18,21,7,11,22,14,28,26,13,17,34,30,

%T 45,27,33,44,32,40,25,35,42,36,48,52,39,51,68,56,70,50,55,66,54,63,49,

%U 77,88,64,72,81,90,60,38,19,23,46,58,29,31,62,74,37,41,82,76,114,57,43

%N a(1) = 1, a(2) = 2 and then the smallest number not occurring earlier such that every term divides the product of its neighbors: a(n-1)*a(n+1)/a(n) is an integer.

%C This is a permutation of natural numbers. [_Leroy Quet_ asks (May 06 2009) if this is a theorem or just a conjecture.]

%C Every time a(n) divides a(n-1), a(n+1) is the next number that is not already in the sequence. I don't have a proof that a(n) divides a(n-1) infinitely often. - _Franklin T. Adams-Watters_, Jun 12 2014

%C It appears that a(n): 1,2,...,3,5,...,7,11,...,prime(2k),prime(2k+1),... - _Thomas Ordowski_, Jul 10 2015

%C The primes do appear to occur in increasing order, but prime(2k) is not always followed directly by prime(2k+1). For example, a(72) = 43 = prime(14), but a(125) = 47 = prime(15). - _Robert Israel_, Jul 10 2015

%C If a(n) and a(n+1) are primes then a(n) divides a(n-1). - _Thomas Ordowski_, Jul 10 2015 [Cf. second comment]

%C a(n) is the least multiple of a(n-1)/gcd(a(n-2),a(n-1)) that has not previously occurred. - _Robert Israel_, Jul 10 2015

%C Conjecture: if a(n) divides a(n-1) then a(n+1) is prime. - _Thomas Ordowski_, Jul 11 2015

%C It seems that a(n) and a(n+1) are consecutive primes if and only if a(n) divides a(n-1) and a(n) < a(n+1). - _Thomas Ordowski_, Jul 13 2015

%H Alois P. Heinz, <a href="/A075075/b075075.txt">Table of n, a(n) for n = 1..10000</a>

%p b:= proc(n) option remember; false end: a:= proc(n) option remember; local k, m; if n<3 then b(n):= true; n else m:= denom(a(n-2) /a(n-1)); for k from m by m while b(k) do od; b(k):= true; k fi end: seq(a(n), n=1..100); # _Alois P. Heinz_, May 16 2009

%t f[s_List] := Block[{m = Numerator[ s[[ -1]]/s[[ -2]] ]}, k = m; While[ MemberQ[s, k], k += m]; Append[s, k]]; Nest[f, {1, 2}, 70] (* _Robert G. Wilson v_, May 20 2009 *)

%o (Haskell)

%o import Data.List (delete)

%o a075075 n = a075075_list !! (n-1)

%o a075075_list = 1 : 2 : f 1 2 [3..] where

%o f z z' xs = g xs where g (u:us) =

%o if (z * u) `mod` z' > 0 then g us else u : f z' u (delete u xs)

%o -- _Reinhard Zumkeller_, Dec 19 2012

%o (Python)

%o from __future__ import division

%o from fractions import gcd

%o A075075_list, l1, l2, m, b = [1,2], 2, 1, 2, {1,2}

%o for _ in range(10**3):

%o ....i = m

%o ....while True:

%o ........if not i in b:

%o ............A075075_list.append(i)

%o ............l1, l2, m = i, l1, i//gcd(l1,i)

%o ............b.add(i)

%o ............break

%o ........i += m # _Chai Wah Wu_, Dec 09 2014

%o (MATLAB)

%o N = 10^6;

%o Avail = ones(1,N);

%o A = zeros(1,N);

%o A(1) = 1; A(2) = 2;

%o Avail([1,2]) = 0;

%o for n=3:N

%o q = round(A(n-1)/gcd(A(n-1),A(n-2)));

%o b = find(Avail(q*[1:floor(N/q)]),1,'first');

%o if numel(b) == 0

%o break

%o end

%o A(n) = q*b;

%o Avail(A(n)) = 0;

%o end

%o A = A(1:n-1); % _Robert Israel_, Jul 10 2015

%Y Cf. A075076 (ratios), A160256, A064413 (EKG sequence).

%Y Cf. A160516 (inverse), A185635 (fixed points).

%K nice,nonn,look

%O 1,2

%A _Amarnath Murthy_, Sep 09 2002

%E More terms from _Sascha Kurz_, Feb 03 2003