Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jun 11 2022 05:23:49
%S 0,4,10,12,28,30,36,40,82,84,90,94,108,112,118,120,244,246,252,256,
%T 270,274,280,282,324,328,334,336,352,354,360,364,730,732,738,742,756,
%U 760,766,768,810,814,820,822,838,840,846,850,972,976,982,984,1000,1002
%N Even numbers such that base 3 representation contains no 2.
%C Even numbers in A005836; n such that binomial(2n,n) == 1 (mod 3).
%C Sum of an even number of distinct powers of 3. - _Emeric Deutsch_, Dec 03 2003
%H Amiram Eldar, <a href="/A074939/b074939.txt">Table of n, a(n) for n = 0..10000</a>
%H E. Deutsch and B. E. Sagan, <a href="https://arxiv.org/abs/math/0407326">Congruences for Catalan and Motzkin numbers and related sequences</a>, arXiv:math/0407326 [math.CO], 2004.
%H E. Deutsch and B. E. Sagan, <a href="https://doi.org/10.1016/j.jnt.2005.06.005">Congruences for Catalan and Motzkin numbers and related sequences</a>, J. Num. Theory 117 (2006), 191-215.
%F a(n) = A083094(n)/2; a(n) mod 3 = A010060(n); n such that coefficient of x^n equals 1 in Product_{k>=0} (1 - x^(3^k)).
%F a(n) + A074938(n) = A055246(n+1). - _Philippe Deléham_, Jul 10 2005
%t Select[2*Range[0,600],DigitCount[#,3,2]==0&] (* _Harvey P. Dale_, Dec 10 2016 *)
%Y Intersection of A005843 and A005836.
%Y Cf. A006996, A010060, A055246, A074938, A083095.
%K easy,nonn
%O 0,2
%A _Benoit Cloitre_, Oct 04 2002; Nov 15 2003