login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for the Product_{p prime} (1 - 2/p^2) (A065474).
2

%I #17 Jul 08 2024 22:13:12

%S 0,3,10,19,2,1,2,2,1,6,1,6,19,17,1,7,1,2,2,1,10,2,6,2,1,3,2,1,21,5,1,

%T 15,1,1,4,1,1,1,443,2,1,4,3,1,1,6,26,6,2,39,4,1,2,6,1,1,2,4,7,1,5,1,3,

%U 1,3,5,10,1,9,5,1,2,4,10,1,1,5,1,1,3,2,2,2,2,1,4,1,1,1,1,11,1,4,1,2,2,2,54

%N Continued fraction for the Product_{p prime} (1 - 2/p^2) (A065474).

%H G. Niklasch, <a href="http://guests.mpim-bonn.mpg.de/moree/Moree.en.html#r25-feller">Some number theoretical constants: 1000-digit values</a>

%t (* download the constant from the link above and set it equal to a *) ContinuedFraction[a, 100]

%o (PARI) contfrac(prodeulerrat(1- 2/p^2)) \\ _Amiram Eldar_, Jun 13 2021

%Y Cf. A007674, A065474.

%Y Increasing partial quotients are in A074178.

%K cofr,nonn

%O 0,2

%A _Robert G. Wilson v_, Sep 13 2002

%E a(1) inserted by _Amiram Eldar_, Jun 13 2021

%E Offset changed by _Andrew Howroyd_, Jul 08 2024