login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + a(n-2) + R(a(n-3)) where a(0) = a(1) = a(2) = 1 and R(n) (A004086) means the reverse of n.
1

%I #16 Apr 05 2020 13:02:08

%S 1,1,1,3,5,9,17,31,57,159,229,463,1643,3028,5035,11524,24762,41591,

%T 108864,177197,305575,951573,2048919,3575995,6000073,18774470,

%U 30770296,53244772,91462849,213915324,333122408,641864151,1398505871,2844591355

%N a(n) = a(n-1) + a(n-2) + R(a(n-3)) where a(0) = a(1) = a(2) = 1 and R(n) (A004086) means the reverse of n.

%H Harvey P. Dale, <a href="/A074858/b074858.txt">Table of n, a(n) for n = 0..1000</a>

%e a(9) = 57 + 31 + R(17) = 57 + 31 + 71 = 159.

%p R:=proc(n) local nn, nnn: nn:=convert(n,base,10): add(nn[nops(nn)+1-j]*10^(j-1),j=1..nops(nn)) end: a[0]:=1: a[1]:=1: a[2]:=1: for n from 3 to 34 do a[n]:=a[n-1]+a[n-2]+R(a[n-3]) od: seq(a[n],n=0..34); # _Emeric Deutsch_, Jul 25 2005

%t RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==a[n-1]+a[n-2]+IntegerReverse[ a[n-3]]},a,{n,40}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 05 2020 *)

%Y Cf. A000213.

%K easy,nonn,base

%O 0,4

%A _Felice Russo_, Sep 11 2002

%E More terms from _Emeric Deutsch_, Jul 25 2005