Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Dec 27 2024 04:11:35
%S 1,3,3,3,3,9,3,3,3,9,3,9,3,9,9,3,3,9,3,9,9,9,3,9,3,9,3,9,3,27,3,3,9,9,
%T 9,9,3,9,9,9,3,27,3,9,9,9,3,9,3,9,9,9,3,9,9,9,9,9,3,27,3,9,9,3,9,27,3,
%U 9,9,27,3,9,3,9,9,9,9,27,3,9,3,9,3,27,9,9,9,9,3,27,9,9,9,9,9,9,3,9,9,9
%N a(n) = 3^A001221(n) = 3^omega(n).
%C Old name was: a(n) = sum(d|n, tau(d)*mu(d)^2 ).
%C Terms are powers of 3.
%C The inverse Mobius transform of A074823, as the Dirichlet g.f. is product_{primes p} (1+2*p^(-s)) and the Dirichlet g.f. of A074816 is product_{primes p} (1+2*p^(-s))/(1-p^(-s)). - _R. J. Mathar_, Feb 09 2011
%C If n is squarefree, then a(n) = #{(x, y) : x, y positive integers, lcm (x, y) = n}. See Crandall & Pomerance. - _Michel Marcus_, Mar 23 2016
%D Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.3 p. 108.
%H R. Zumkeller, <a href="/A074816/b074816.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = 3^m if n is divisible by m distinct primes. i.e., a(n)=3 if n is in A000961; a(n)=9 if n is in A007774 ...
%F a(n) = 3^A001221(n) = 3^omega(n). Multiplicative with a(p^e)=3. - _Vladeta Jovovic_, Sep 09 2002.
%F a(n) = tau_3(rad(n)) = A007425(A007947(n)). - _Enrique Pérez Herrero_, Jun 24 2010
%F a(n) = abs(Sum_{d|n} A000005(d^3)*mu(d)). - _Enrique Pérez Herrero_, Jun 28 2010
%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} 2^omega(d) (The total number of unitary divisors of the unitary divisors of n). - _Amiram Eldar_, May 29 2020, Dec 27 2024
%F a(n) = Sum_{d1|n, d2|n} mu(d1*d2)^2. - _Wesley Ivan Hurt_, Feb 04 2022
%F Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - _Vaclav Kotesovec_, Feb 16 2022
%t A074816[n_]:=3^PrimeNu[n]; (* _Enrique Pérez Herrero_, Jun 28 2010 *)
%o (PARI) a(n) = 3^omega(n); \\ _Michel Marcus_, Mar 23 2016
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X))[n], ", ")) \\ _Vaclav Kotesovec_, Feb 16 2022
%Y Cf. A001221, A034444, A069212, A124508.
%K nonn,mult
%O 1,2
%A _Benoit Cloitre_, Sep 08 2002
%E Simpler definition at the suggestion of _Michel Marcus_. - _N. J. A. Sloane_, Mar 25 2016