login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integers k such that sigma(k) divides n.
3

%I #17 Dec 12 2024 15:39:14

%S 1,1,2,2,1,3,2,3,2,1,1,6,2,3,3,3,1,5,1,3,3,1,1,10,1,2,2,5,1,5,3,5,2,1,

%T 2,9,1,2,4,5,1,8,1,3,3,1,1,13,2,1,2,3,1,7,1,8,3,1,1,12,1,4,4,5,2,3,1,

%U 3,2,3,1,18,1,2,3,3,2,6,1,7,2,1,1,15,1,1,2,4,1,10,4,2,5,1,1,19,1,5,2,3,1

%N Number of integers k such that sigma(k) divides n.

%H Antti Karttunen, <a href="/A074754/b074754.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F sum(k=1, n, a(k)) seems to be asymptotic to c*n*log(n) with c=0.7...

%F G.f.: sum(k>=1, 1/(1-x^sigma(k))).

%F a(n) = Sum_{k=1..n} (1 - ceiling(n/sigma(k)) + floor(n/sigma(k))). - _Wesley Ivan Hurt_, Apr 21 2023

%t Table[Length[Select[Range[n], Divisible[n, DivisorSigma[1,#]]&]], {n, 1, 100}] (* _Vaclav Kotesovec_, Feb 16 2019 *)

%o (PARI) a(n)=sum(i=1,n,if(n%sigma(i),0,1))

%o (PARI) a(n)=if(n<1,0,polcoeff(sum(k=1,n,1/(1-x^sigma(k)),x*O(x^sigma(n))),n))

%Y Cf. A000203, A070610.

%Y Row lengths of A378912.

%K nonn

%O 1,3

%A _Benoit Cloitre_, Sep 28 2002