login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Highest power of 3 dividing F(4n) where F(k) is the k-th Fibonacci number.
1

%I #24 Jun 18 2022 14:18:22

%S 3,3,9,3,3,9,3,3,27,3,3,9,3,3,9,3,3,27,3,3,9,3,3,9,3,3,81,3,3,9,3,3,9,

%T 3,3,27,3,3,9,3,3,9,3,3,27,3,3,9,3,3,9,3,3,81,3,3,9,3,3,9,3,3,27,3,3,

%U 9,3,3,9,3,3,27,3,3,9,3,3,9,3,3,243,3,3,9,3,3,9,3,3,27,3,3,9,3,3,9,3,3

%N Highest power of 3 dividing F(4n) where F(k) is the k-th Fibonacci number.

%C If m == 1, 2 or 3 (mod 4) then F(m) is not divisible by 3.

%H Amiram Eldar, <a href="/A074724/b074724.txt">Table of n, a(n) for n = 1..10000</a>

%F If k == 1 or 2 (mod 3) then a(3^m*k) = 3^(m+1) for m>=0.

%F a(n) = A038500(A033888(n)). - _Amiram Eldar_, May 13 2022

%F a(n) = 3^A051064(n) (conjectured). - _Michel Marcus_, May 17 2022

%F Conjecture: a(n) = (sigma(3*n) - sigma(n))/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). Equivalently, a(n) = A088838(n) - A074724(n). - _Peter Bala_, Jun 10 2022

%t Table[3^IntegerExponent[Fibonacci[4n],3],{n,100}] (* _Harvey P. Dale_, Jun 03 2012 *)

%o (PARI) a(n) = 3^valuation(fibonacci(4*n), 3); \\ _Michel Marcus_, May 13 2022

%Y Cf. A000045, A000203, A038500, A033888, A051064, A074724, A088838.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Sep 04 2002