login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Lyndon words (aperiodic necklaces) with 3n beads of 3 colors, n beads of each color.
2

%I #10 Oct 21 2021 10:46:38

%S 1,2,14,186,2880,50450,952854,19003474,394394880,8439756660,

%T 185033201150,4137181680698,94020326259264,2166105078791446,

%U 50489825369325118,1188777328563863850,28236363841594782720,675879582290807439794,16289254212695836475436

%N Number of Lyndon words (aperiodic necklaces) with 3n beads of 3 colors, n beads of each color.

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F a(n) = 1/(3n) * Sum_{d|n} mu(n/d) * (3d)! / d!^3, a(0) = 1.

%F a(n) = A029808(n)*2 = A074651(n)/3.

%Y Cf. A029808, A074651, A022553 (2n of 2 colors), A074656 (4n of 4 colors).

%K nonn

%O 0,2

%A _Christian G. Bower_, Aug 29 2002

%E a(0)=1 prepended by _Alois P. Heinz_, Aug 24 2015