%I #24 Aug 12 2018 12:59:24
%S 2,16,130,1072,8962,75856,649090,5606512,48811522,427774096,
%T 3769259650,33358386352,296270823682,2638754838736,23555015527810,
%U 210638693604592,1886253119421442,16909812213653776,151723048894909570
%N a(n) = 7^n + 9^n.
%C Up to signs, the ninth inverse binomial transform of 2^n+delta(n,0), where delta is the Kronecker delta function. - _John M. Campbell_, Jul 29 2018
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-63).
%F From _Mohammad K. Azarian_, Jan 11 2009: (Start)
%F G.f.: 1/(1-7*x) + 1/(1-9*x).
%F E.g.f.: exp^(7*x) + exp^(9*x). (End)
%F a(n) = 16*a(n-1) - 63*a(n-2) with a(0)=2, a(1)=16. - _Vincenzo Librandi_, Jul 21 2010
%F a(n) = A000420(n) + A001019(n). - _Michel Marcus_, Jul 30 2018
%t Table[7^n + 9^n, {n, 0, 20}]
%t LinearRecurrence[{16,-63},{2,16},30] (* _Harvey P. Dale_, Aug 22 2015 *)
%Y Cf. A000420 (powers of 7), A001019 (powers of 9).
%Y Cf. A000051, A034472, A052539, A034474, A062394, A034491, A062395, A062396, A007689, A063376, A063481, A074600..A074624.
%K easy,nonn
%O 0,1
%A _Robert G. Wilson v_, Aug 26 2002