login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the coefficients of the n-th Moebius polynomial, M(n,x), where M(n,-1) = mu(n), the Moebius function of n.
10

%I #14 Mar 31 2012 20:55:21

%S 1,3,7,18,37,85,171,364,736,1513,3027,6168,12337,24849,49743,99872,

%T 199745,400322,800645,1602862,3205903,6414837,12829675,25665996,

%U 51332030,102676401,205353546,410732134,821464269,1642979927,3285959855

%N Sum of the coefficients of the n-th Moebius polynomial, M(n,x), where M(n,-1) = mu(n), the Moebius function of n.

%C It seems that a(n+1)>2*a(n). - _Benoit Cloitre_, Aug 26 2002

%C a(n+1)=2*a(n)+1 if and only if n+1 is prime. - _Benoit Cloitre_, Dec 04 2002

%H T. D. Noe, <a href="/A074587/b074587.txt">Table of n, a(n) for n=1..300</a>

%F a(n) = M(n, 1) (see A074586 for definition of M(n, x)). a(n) mod 2 = A008966(n). a(n) is asymptotic to c*2^n with c=1.530191414016549187154362361492633020259512374111... _Benoit Cloitre_, Dec 04 2002

%F a(1)=1 a(n)=1+sum(i=1, n-1, floor(n/i)*a(i)). - _Benoit Cloitre_, Dec 04 2002

%e a(5) = M(5,1) = 1+9+15+10+2 = 37, since M(5,x) = 1 + 9x +15x^2 +10x^3 + 2x^4.

%t m[n_, x_] := m[n, x]=1+x*Sum[m[i, x]Floor[n/i], {i, 1, n-1}]; Table[m[n, 1], {n, 1, 40}]

%Y Cf. A074586.

%Y First column of A169659. [From Mats Granvik, _Paul D. Hanna_, Apr 05 2010]

%K easy,nice,nonn

%O 1,2

%A _Paul D. Hanna_, Aug 25 2002

%E Cross reference corrected by _Mats Granvik_, Apr 23 2010