login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 3^n + 5^n + 9^n.
1

%I #20 Sep 08 2022 08:45:07

%S 3,17,115,881,7267,62417,547795,4863281,43443907,389393297,3496609075,

%T 31430064881,282674208547,2543088125777,22882900753555,

%U 205921664021681,1853172819789187,16677944768259857,150098450381685235

%N a(n) = 3^n + 5^n + 9^n.

%H Vincenzo Librandi, <a href="/A074554/b074554.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-87,135).

%F From _Mohammad K. Azarian_, Dec 30 2008: (Start)

%F G.f.: 1/(1-3*x) + 1/(1-5*x) + 1/(1-9*x).

%F E.g.f.: exp(3*x) + exp(5*x) + exp(9*x). (End)

%F a(n) = 17*a(n-1) - 87*a(n-2) + 135*a(n-3).

%t Table[3^n + 5^n + 9^n, {n, 0, 20}]

%t LinearRecurrence[{17,-87,135},{3,17,115},30] (* _Harvey P. Dale_, Nov 27 2012 *)

%o (Magma) [3^n + 5^n + 9^n: n in [0..30]]; // _Vincenzo Librandi_, Jun 13 2011

%Y Cf. A001550, A001576, A034513, A001579, A074501 - A074580.

%K easy,nonn

%O 0,1

%A _Robert G. Wilson v_, Aug 23 2002