login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 2^n + 5^n + 9^n.
1

%I #17 Sep 08 2022 08:45:07

%S 3,16,110,862,7202,62206,547130,4861222,43437602,389374126,3496551050,

%T 31429889782,282673681202,2543086539646,22882895986970,

%U 205921649705542,1853172776808002,16677944639250766,150098449994526890,1350870791159844502,12157760826489618002

%N a(n) = 2^n + 5^n + 9^n.

%H Vincenzo Librandi, <a href="/A074540/b074540.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (16,-73,90).

%F From _Mohammad K. Azarian_, Dec 27 2008: (Start)

%F G.f.: 1/(1-2*x) + 1/(1-5*x) + 1/(1-9*x).

%F E.g.f.: exp(2*x) + exp(5*x) + exp(9*x). (End)

%F a(n) = 16*a(n-1) - 73*a(n-2) + 90*a(n-3) for n > 2. - _Wesley Ivan Hurt_, Oct 06 2017

%p A074540:=n->2^n + 5^n + 9^n: seq(A074540(n), n=0..30); # _Wesley Ivan Hurt_, Oct 06 2017

%t Table[2^n + 5^n + 9^n, {n, 0, 20}]

%o (Magma) [2^n + 5^n + 9^n: n in [0..25]]; // _Vincenzo Librandi_, Jun 11 2011

%Y Cf. A001550, A001576, A001579, A034513, A074501 - A074580.

%K easy,nonn

%O 0,1

%A _Robert G. Wilson v_, Aug 23 2002