login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1^n + 2^n + 9^n.
0

%I #17 Aug 28 2019 09:06:26

%S 3,12,86,738,6578,59082,531506,4783098,43046978,387421002,3486785426,

%T 31381061658,282429540578,2541865836522,22876792471346,

%U 205891132127418,1853020188917378,16677181699797642,150094635297261266

%N a(n) = 1^n + 2^n + 9^n.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (12,-29,18).

%F From _Mohammad K. Azarian_, Dec 26 2008: (Start)

%F G.f.: 1/(1-x) + 1/(1-2*x) + 1/(1-9*x).

%F E.g.f.: e^x + e^(2*x) + e^(9*x). (End)

%F a(n) = 11*a(n-1) - 18*a(n-2) + 8 with a(0)=3, a(1)=12. - _Vincenzo Librandi_, Jul 21 2010

%t Table[1^n + 2^n + 9^n, {n, 0, 20}]

%t LinearRecurrence[{12,-29,18},{3,12,86},30] (* _Harvey P. Dale_, Aug 28 2019 *)

%Y Cf. A001550, A001576, A034513, A001579, A074501..A074580.

%K easy,nonn

%O 0,1

%A _Robert G. Wilson v_, Aug 23 2002