login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solutions to mod(sigma(x), 6) = 5.
11

%I #17 Jul 14 2020 07:04:36

%S 2401,9604,21609,28561,38416,60025,86436,114244,130321,153664,194481,

%T 240100,257049,290521,345744,456976,521284,540225,614656,693889,

%U 714025,777924,923521,960400,1028196,1162084,1172889,1270129,1382976,1500625

%N Solutions to mod(sigma(x), 6) = 5.

%H Amiram Eldar, <a href="/A074384/b074384.txt">Table of n, a(n) for n = 1..1000</a>

%F {n: A084301(n) = 5}. - _R. J. Mathar_, May 19 2020

%e 4th powers of primes of the form 6k+1 are here because sigma[p^4]=p^4+p^3+p^2+p+1 congruent 1+1+1+1+1=5 mod 6. There are also other fourth powers, like 38416=(2*7)^4, 194481=(3*7)^4, 456976=(2*13)^4, and solutions which are not fourth powers like 9604=2^2*7^4 and 21609=3^2*7^4.

%t Do[s=Mod[DivisorSigma[1, n], 6]; If[s==5, Print[n]], {n, 1, 1000000}]

%t Select[Range[1600000],Mod[DivisorSigma[1,#],6]==5&] (* _Harvey P. Dale_, Jul 06 2014 *)

%Y Cf. A000203, A072862, A072461, A072462.

%K nonn

%O 1,1

%A _Labos Elemer_, Aug 22 2002