login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the divisors of Sum_{i=1..n} prime(i).
1

%I #15 Mar 09 2020 09:11:02

%S 3,6,18,18,56,42,90,96,217,176,378,198,432,282,630,512,1080,672,1080,

%T 936,1350,912,1440,1404,2268,1760,2480,1832,3420,2400,3960,2472,4032,

%U 2840,3990,3240,5400,2856,4608,5200

%N Sum of the divisors of Sum_{i=1..n} prime(i).

%H Amiram Eldar, <a href="/A074370/b074370.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000203(A007504(n)). - _R. J. Mathar_, Apr 03 2011

%e sigma(prime(1) + prime(2) + prime(3)) = sigma(10) = 18, so a(3) = 18.

%p A007504 := proc(n) add( ithprime(i),i=1..n) ; end proc:

%p A074370 := proc(n) numtheory[sigma](A007504(n)) ; end proc: # _R. J. Mathar_, Apr 03 2011

%t s = 0; l = {}; Do[s = s + Prime[i]; l = Append[l, DivisorSigma[1, s]], {i, 1, 100}]; l

%t DivisorSigma[1,#]&/@Accumulate[Prime[Range[50]]] (* _Harvey P. Dale_, Mar 13 2011 *)

%Y Cf. A000203, A007504.

%K easy,nonn

%O 1,1

%A _Joseph L. Pe_, Sep 24 2002