login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda) = (3,1).
2

%I #19 Mar 03 2024 11:38:51

%S 0,0,0,0,10,66,336,1527,6513,26667,106102,413265,1583331,5986689,

%T 22392606,83002842,305308666,1115587020,4052786850,14648359515,

%U 52705460583,188868467853,674332868566,2399653030899,8513523719661

%N Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda) = (3,1).

%C Coefficient of q^0 is A006190(n+1).

%H M. Beattie, S. Dăscălescu and S. Raianu, <a href="https://arxiv.org/abs/math/0204075">Lifting of Nichols Algebras of Type B_2</a>, arXiv:math/0204075 [math.QA], 2002.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (9, -24, 9, 24, 9, 1).

%F G.f.: (-3*x^7 - 18*x^6 - 24*x^5 + 10*x^4)/(1 - 3*x - x^2)^3.

%e The first 6 nu polynomials are nu(0) = 1, nu(1) = 3, nu(2) = 10, nu(3) = 33 + 3*q, nu(4) = 109 + 19*q + 10*q^2, nu(5) = 360 + 93*q + 66*q^2 + 36*q^3 + 3*q^4, so the coefficients of q^1 are 0,0,0,0,10,66.

%t Join[{0, 0}, LinearRecurrence[{9, -24, 9, 24, 9, 1}, {0, 0, 10, 66, 336, 1527}, 30]] (* _Jean-François Alcover_, Dec 13 2018 *)

%Y Coefficient of q^0, q^1 and q^3 are in A006190, A074361 and A074363. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074360.

%K nonn

%O 0,5

%A Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

%E More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002