login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074330
a(n) = Sum_{k=1..n} 2^b(k) where b(k) denotes the number of 1's in the binary representation of k.
5
2, 4, 8, 10, 14, 18, 26, 28, 32, 36, 44, 48, 56, 64, 80, 82, 86, 90, 98, 102, 110, 118, 134, 138, 146, 154, 170, 178, 194, 210, 242, 244, 248, 252, 260, 264, 272, 280, 296, 300, 308, 316, 332, 340, 356, 372, 404, 408, 416, 424, 440, 448, 464, 480, 512, 520, 536
OFFSET
1,1
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 29.
FORMULA
a(n+1)-a(n) = A001316(n)
From Ralf Stephan, Oct 07 2003: (Start)
a(0)=0, a(2n) = 2a(n-1) + a(n) + 2, a(2n+1) = 3a(n) + 2.
G.f.: (1/(1-x)) * Product_{k>=0} (1 + 2x^2^k). (End)
MAPLE
f:= proc(n) option remember; if n::even then 2*procname(n/2-1)+procname(n/2)+2
else 3*procname((n-1)/2)+2
fi
end proc:
f(0):= 0:
map(f, [$1..100]); # Robert Israel, Oct 08 2020
MATHEMATICA
b[n_] := IntegerDigits[n, 2] // Total;
a[n_] := 2^(b /@ Range[n]) // Total;
Array[a, 100] (* Jean-François Alcover, Aug 16 2022 *)
PROG
(PARI) a(n)=sum(i=1, n, 2^sum(k=1, length(binary(i)), component(binary(i), k)))
CROSSREFS
a(n) = A006046(n+1)-1. Cf. A080263.
Sequence in context: A300781 A050567 A069879 * A317626 A292550 A024895
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Oct 06 2002
STATUS
approved