login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dominant (i.e., most populous) digit in Kolakoski sequence (A000002) when partitioned into groups of 7.
3

%I #9 Jul 29 2017 23:48:14

%S 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,2,1,1,1,2,2,2,1,2,2,1,2,1,2,2,2,1,1,2,

%T 1,2,1,1,2,1,2,1,2,2,2,1,1,2,1,2,1,2,2,2,1,1,2,1,2,1,1,2,1,1,2,2,1,1,

%U 2,1,2,1,1,2,2,2,1,2,2,1,1,2,1,1,1,2,1

%N Dominant (i.e., most populous) digit in Kolakoski sequence (A000002) when partitioned into groups of 7.

%H Nathaniel Johnston, <a href="/A074295/b074295.txt">Table of n, a(n) for n = 1..10000</a>

%e Kolakoski : (1,2,2,1,1,2,1),(2,2,1,2,2,1,1),(2,1,1,2,2,1,2),... hence 1,2,2,...

%p lim:=400: s:=[1, 2, 2]: for n from 3 to lim do for i from 1 to s[n] do s:=[op(s), 1+((n-1)mod 2)]: od: od: lim2:=floor(nops(s)/7)-1: for n from 0 to lim2 do if(add(s[7*n+k],k=1..7)<=10)then printf("1, "): else printf("2, "): fi: od: # _Nathaniel Johnston_, May 01 2011

%Y Cf. A074292, A074293.

%K nonn,base,easy

%O 1,2

%A _Jon Perry_, Sep 21 2002